Magnetically Induced Transparency and Its
Application as an Accelerator

M.S. Hur*, J.S. Wurtele® and G. Shvets**

*University of California Berkeley
YUniversity of California Berkeley and Lawrence Berkeley National Laboratory
**llinois Institute of Technology

Abstract. Recently it was found [1-3] that a magnetized plasma can be made transparent to a right-
hand polarized cyclotron frequency resonant wave in the presence of a strong pump or a helical
magnetic wiggler. Theory predicts and simulations verify that the group velocity of the probe is
slow, and the phase velocity of the longitudinal wave controllable. These properties of the system
suggest the possibility of its being used as an advanced accelerator of heavy particles. We present the
theory and simulations of transparency and a preliminary study of its application as an accelerator.

INTRODUCTION

Recently it was theoretically found that a magnetized plasma can be made transparent to
a right-hand polarized wave (probe) at the cyclotron frequency in the presence of strong
pump wave which is detuned by the plasma frequency [1-3]. This is a classical analogy
of the quantum electromagnetically induced transparency (EIT) [4,5]. The basic idea
is to cancel the resonant response of electrons to the probe by the sideband of pump
induced by electron’s ponderomotive motion. The same transparency can be induced by
a static helical magnetically wiggler, where the wiggler replaces the dynamic magnetic
field of the pump.

The wiggler-plasma system has numerous properties desirable for an heavy particle
accelerator. The phase velocity of the longitudinal wave is slow, which makes it easier to
trap non-relativistic heavy particles. Furthermore, the phase velocity is readily controlled
by adjusting the wiggler wavelength.

THEORY AND SIMULATION

Figure 1 shows a schematics of the system. The plasma is magnetized by an axial
magnetic field B.. A right-hand polarized probe and pump are launched together, where
the probe frequency is in cyclotron resonance and the pump frequency is down-shifted
from the cyclotron resonance by the plasma frequency. When there is no pump, a large
transverse current is resonantly excited and the probe is absorbed in the plasma. In
the presence of the pump, electrons move longitudinally in the ponderomotive beat
potential of the two waves, which varies as e A9 AR where A (Ak) is beat frequency
(wavenumber) between the pump and the probe. The pump electric field as seen by
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FIGURE 1. EIT in magnetized plasma

an electron is approximated as E’O(z,t) ~ Eo(zo,t) +¢ x BZEO, where z =z, + (, z,
represents the initial position of the electron, and { is its longitudinal displacement. The
second term couples the longitudinal motion and the transverse field, thereby inducing
sidebands at frequencies @, = Aw. A critical aspect of induced transparency in plasma
is that the electron perpendicular motion due to the probe electric field is canceled
by the response to the upper sideband (which is at the probe frequency). Details of
mathematical expansion can be found elsewhere [2,3], where it is shown that phase of
the sideband field is automatically matched to cancel the probe field.

Transparency is demonstrated in Fig. 2. Parameters are probe intensity a, =
ek, /mczk1 = 0.005, pump intensity a, = 0.05, 0, = ., ®, = 0.8Q, and
w, = (4me’n, /m)/2 = 0.2Q.. The cyclotron frequency (€.) is 1.8x10!! Hz. We
measured the propagation of the wave envelope and the longitudinal wave inside the
plasma slab. The oscillation pattern of the envelope is simply the beat of the pump and
probe. At earlier times, in Fig. 2 (a), there is no beat on the right side of the plasma. This
implies that the probe has not been transmitted. As the longitudinal wave is excited in
the whole region of the plasma (Fig. 2 (d)), transparency of the probe is observed (Fig.
2 {c)).

The pump wave can be replaced by a helical magnetic wiggler with wavelength A,,.
In this case, the wiggler corresponds to a pump with zero frequency and wavenumber
of k, = 2m/A,. Therefore the matching condition for frequencies should be w, =
o, — ®, = @,. The longitudinal motion of an electron is

C — %eiﬂl +ikyzy + %e—ielq:iszo’ (1)
where the signs + represent right- and left-hand wiggler polarizations. The equation of
transverse motion is

B +iQB, = —wa,e® + ZQTWC eTihnzo, )
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FIGURE 2. Simulation of resonant wave transparency. The wave envelope at two different times (left
column) and the corresponding longitudinal wave inside the plasma slab (right column) shows that the
excitation of the plasma wave leads to the transmission of the probe (see text).

where 8, = (vx —ivy)/2¢c, 8; = ik;z, —iwt, and Q,, = eBy,/mc. A discussion of the
polarization of the electron motion can be found in Ref. [3]. The eikonal term was
approximated as e (0T6)=1! ~ ¢ (1 4 jk ) and nonlinear terms in @, and { were
ignored. Substituting Eq. (1) into Eq. (2) yields the steady-state solution for transverse
motion:

ol

_ Qv 2\ s,
B.= wl—Qc(al 2c€)e *

i,
2c(o; +Q.)

g*e—iel :FZika. (3)
It is important to note that a finite solution can exist at resonance (@w; = £2.) when

Q2
a=22L. @

Equation (4) represents the cancellation of probe by the probe-wiggler coupling.
A dispersion relation is obtained by considering the more general case of 6Q =
o, — Q. # 0. To find { for a detuned probe, we solve the longitudinal equation of motion.

_iel iQwC

> (ﬁ+eiik‘”zo) +ec.c. )

2
. C
C+w§§ = —?klalﬁ+e

The driving terms on the RHS of Eq. (5) are from v, x (B, + B,;) where B, is the
dynamic magnetic induction of the probe. Substituting Eq. (3) into Eq. (5) and using
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FIGURE 3. Simulation of transparency in a system where the pump electromagnetic wave is replaced
by a wiggler field. The labels 1, 2, 3 refer to different times. Note that the pulse is compressed in the
plasma.

d} = —w? yields

2 N F @y CQuzy Q. o 2
(—or+wp)¢ CQW[COI—QC(QI 20€) 2ca)1+QcC]' ©

Eliminating 5 from Eq. (3) and Eq. (6), the ¢’®1-component of 8 . is calculated as

B :_iw1a1(w193v—2(gc+w1)259) i0,
+ 20792 — 2(Qc + 0,)26Q2 '

@

Using —(c?0? — 9?)E, = 4md,J and the ¢’ -component of J calculated from Eq. (7),
the dispersion relation is derived:

2 2
of = Ch + o0 2(0129:2: ~ 802507 ®

Here only weak detuning (§€/®,; < 1) is considered and O(5Q3) were ignored.

Figure 3 is a simulation of probe transparency in the wiggler system. Since there is a
large difference in the phase and group velocities, the pulse shape is distorted as it passes
through the plasma.

A dispersion relation was obtained from simulations by measurement of wavelength
as a function of frequency. Comparison with Eq. (8) is in Fig. 4. The theory and
simulation are in good agreement except for the left-hand polarized wiggler with 4,, =
0.3 m. We expect the difference in dispersion property between the left- and right-hand
polarization of the wiggler originates from the second term on the RHS of Eq. (3). This
term was ignored in the derivation of the dispersion relation, since it is generally not
resonant with the ¢’® -component of the probe. However at some specific values of A, it
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FIGURE 4. Dispersion relation of probe in wiggler system for (a) By,/B. = 0.8 and (b) By,/B. = 0.6.
Wiggler parameters are a right-hand polarized wiggler with 4,, = 0.3 m (circles), left-hand with A,, = 0.3
m (inverted triangles), right-hand with A,, = 0.1 m (squares), and left-hand with A,, = 0.1 m {triangles).

may become close to resonance or to a higher harmonic, in which case the theory should
be modified to include the new term (this is currently under study).

INITIAL ACCELERATOR SIMULATIONS

One of the remarkable characteristics of the wiggler-plasma system is that the phase
velocity of the longitudinal wave is readily controllable. This is possible since the longi-
tudinal electron motion described by Eq. (1) gives a phase velocity v, = @, / (kv =k ).
The amplitude of the longitudinal wave does not depend on £,,. Therefore it is possi-
ble to control v, keeping the wave level fixed just by changing the wiggler wavelength.
Since the wave level depends on @, it is not a good parameter for controlling the phase
velocity. The readily controllable phase velocity is a desirable property for an ion accel-
erator. Usually the ions or other heavy particles have low velocity, which requires low
phase velocity for particle trapping. Figure 5 is an example of longitudinal electric field
obtained from simulation for ¢; = 0.04, B. =1 T, B,, = 0.7 T, and A,, = 0.01 m. The
measured phase velocity is 0.5¢ which is very close to the theoretical value 0.56¢. Theo-
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FIGURE 5. The longitudinal electric field for parameters a; = 0.04, B, =1 T, B,, = 0.7 T, and
Aw=0.01m.
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FIGURE 6. A tapered longitudinal wave for parameters 2, = 0.02, B, = 1 T, By, = 0.8 T, and tapering
kw(z) = 628 — 1250z.

retically there is no limit in lowering down the phase velocity by decreasing the wiggler
wavelength.

Spatial variation of the phase velocity is also possible by tapering the wiggler. This
is very useful since it compensates for the drawback of using low phase velocity. The
wavelength of the longitudinal wave should become shorter so as to make v, smaller
(for a given frequency), but the particles accelerated on the short wavelength are prone
to quick dephasing. The synchronism is maintained between the accelerating wave and
the particles if the phase velocity increases as the particles are accelerated. Figure 6 is
longitudinal electric field when a tapered wiggler was used. It is clearly seen that the
wavelength becomes larger along the propagating direction.
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FIGURE 7. E;vs.a,B./B,, for (a} A, = 0.01 mand (b} A,, = 0.02 m.

A most important figure of merit is the accelerating gradient. As seen in Fig. 5 and
Fig. 6, typical values of the accelerating field are of order 107 V/m, which are of interest
of an ion accelerator. From Eq. (4) and 4nJ = —dE /dt, we calculate the amplitude of
the longitudinal field to be

©

For a given value of B, E, is proportional to the product of @, and the ratio of B to
B,,. Figure 7 shows the measured £, (from simulations) as a function of a,B./B,, with
B, = 1T. For lower values of a, B./B,, simulation results agree very well with Eq. (9),
but E; saturates nonlinearly as a, B./B,, increases. The nonlinearity may be related to the
large amplitude of the plasma wave, which is of order én/n ~ 0.3 for a,B./B,, ~ 0.05.

w
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SUMMARY

We presented the theory and simulation of EIT in plasma for an electromagnetic pump
and a wiggler system. The transparency of the resonant signal is induced by a similar
mechanism in both cases. The wiggler system has a couple of desirable properties
for an ion accelerator: the phase velocity of the accelerating wave can be controlled
and spatially tapered just by tapering of the wiggler. Control of the phase velocity
makes it possible to trap and accelerate low energetic heavy particles. We performed
apreliminary study of the maximum longitudinal accelerating gradient. Further detailed
analysis and simulation is in progress [6].
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